a2 United States Patent

Fernando

US009342369B2

US 9,342,369 B2
May 17, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(1)

(52)

(58)

SYSTEM AND METHOD FOR INCREASING
THROUGHPUT OF A PAAS SYSTEM

Applicant: Wal-Mart Stores, Inc., Bentonville, AR

us)

Inventor: Ashwanth Fernando, Foster City, CA
us)

Assignee: Wal-Mart Stores, Inc., Bentonville, AR
us)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 269 days.

Appl. No.: 13/735,896

Filed: Jan. 7, 2013
Prior Publication Data
US 2014/0196044 A1 Jul. 10, 2014
Int. CI.
GOG6F 9/46 (2006.01)
GOG6F 9/50 (2006.01)
U.S. CL
CPC GOG6F 9/5072 (2013.01); GO6F 9/5027

(2013.01); GO6F 2209/5018 (2013.01)
Field of Classification Search

(56) References Cited

U.S. PATENT DOCUMENTS

7,082,604 B2* 7/2006 Schneiderman 718/100
2009/0112566 Al* 4/2009 Chanceyetal. ... 703/22
2010/0186020 Al1* 7/2010 Maddhirala et al. ... 718/105
2011/0161976 Al* 6/2011 Alexander et al. 718/104
2011/0252428 Al* 10/2011 Maruyama 718/103
2013/0179895 Al* 7/2013 Calder et al. .. 718/104
2013/0227558 Al* 82013 Duetal. ... 718/1
2014/0007121 Al* 1/2014 Caufieldetal. 718/103

* cited by examiner

Primary Examiner — Lewis A Bullock, Jr.
Assistant Examiner — Jacob Dascomb
(74) Attorney, Agent, or Firm — Bryan Cave LLP

(57) ABSTRACT

Systems and methods are disclosed for managing the
throughput of a platform as a service (PaaS) system. A plu-
rality of PaaS nodes receives deployment jobs, such as from
aninterface by way of aload balancer. The PaaS nodes extract
deployment actions and an action count and post the deploy-
ment actions to a queue. The PaaS nodes also initiate, in a
coordinator, a counter for the deployment job. The PaaS
nodes retrieve deployment actions from the queue and
execute them, such as in one of a plurality of threads in a
flexible thread pool. Upon completing the action, the PaaS
nodes report update the counter corresponding to the deploy-

CPC ... GO6F 9/5055; GOGF 9/5066; GO6F 9/5083;
GOG6F 2009/4557;, GOGF 8/61; GOGF 8/60;
GOG6F 9/5072; GOGF 9/5027; GO6F 2209/5018

See application file for complete search history.

ment job of the action. When a counter for a deployment jobs
reaches the action count for the job, completion is reported.

14 Claims, 8 Drawing Sheets

Receive Deployment Job 502

L]

Submit Deployment Job to Load
Balancer 504

y

Assign Deployment Job to PaaS Node
506

Y

Extract Deployment Actions 508

L]

Add Deployment Actions to Queue
510

L]

Request Counter Initiation 512

L]

Request Listener Registration 514

Y

Request Thread-Safe Lock 516

500

US 9,342,369 B2

Sheet 1 of 8

May 17, 2016

U.S. Patent

L ‘B4
7or 7or vor 7or
SPON uone|eisu| SpPON uolne|jeisu| SpPON uonegjjeisu| SPON uonegjjesu|
901
\’\
20b 20b 2o 201
SpPON Seed SpPON Seed SpPON Seed SpPON Seed
rAN
oLt 801 001
dINPO Jo1BUIPIO0D) a|npo\ dnanyd [epod

U.S. Patent May 17, 2016 Sheet 2 of 8 US 9,342,369 B2

200

212A
q »

Processor 202 <—P

Mass Storage

Device(s) 208
Hard Disk Drive
Memory Device(s) — 224
204
Removable
RAM 214 Storage 226
—P>
ROM 216
Input/Output (1/0)
> DeVice(S) m
Interface(s) 206
User Interface

218 <¢—| Display Device 240

Network
>
Interface 220
Peripheral
Device Interface
222
\/

Fig. 2

U.S. Patent

May 17, 2016

Sheet 3 of 8 US 9,342,369 B2

PaaS

Node 102

Job Queuing Module
300

Execution Module
304

Queue Interface Module
302

Updating Module
306

Fig. 3

Coordinator Module 11

Counter Initiation Module
400

Listening Module
404

Counter Update Module
402

Reporting Module
406

Fig. 4

U.S. Patent May 17, 2016 Sheet 4 of 8 US 9,342,369 B2

Receive Deployment Job 502
500

v »

Submit Deployment Job to Load
Balancer 504

v

Assign Deployment Job to PaaS Node
506

v

Extract Deployment Actions 508

v

Add Deployment Actions to Queue
510

v

Request Counter Initiation 512

v

Request Listener Registration 514

v

Request Thread-Safe Lock 516

Fig. 5

U.S. Patent May 17, 2016 Sheet 5 of 8 US 9,342,369 B2

Submit Request for Action to Queue
602 600

v

Receive Action Assignment 604

v

Execute Action 606

v

Obtain Lock for Job Counter 608

v

Update Job Counter 610

v

Release Lock 612

Fig. 6

U.S. Patent

May 17, 2016 Sheet 6 of 8

L

Submit Request for Action to Queue
702

v

Receive Action Assignment 704

v

Select/Instantiate Thread 706

v

Start Thread Execution of Assigned
Action 708

Fig. 7

Receive Job Identifier and Action
Count 802

v

Initiate Counter for Job ID 804

v

Receive Listener 806

v

Register Listener for Job ID 808

v

Generate Thread-Safe Lock 810

Fig. 8

US 9,342,369 B2

700

800

U.S. Patent May 17, 2016 Sheet 7 of 8 US 9,342,369 B2

Receive Action Lock Request with Job
ID 902 900

v »

Lock Counter for Job ID 904

y

Increment Counter 906
Receive Lock Release 908

Release Lock 910

y

Action Count Reached?

912 Execute Listener 916

Report Job Completion 914

Fig. 9

U.S. Patent May 17, 2016 Sheet 8 of 8 US 9,342,369 B2

Retrieve Live Counter Number 1002

1000

Y »

Live
Counter Number + Buffer
> Total Threads?
1004

Instantiate PaaS Instance(s)
1006

Live
Counter Number + Buffer
< Total Threads?
1008

End

De-Provision PaaS Instance(s) 1010

Fig. 10

US 9,342,369 B2

1
SYSTEM AND METHOD FOR INCREASING
THROUGHPUT OF A PAAS SYSTEM

BACKGROUND

1. Field of the Invention

This invention relates to systems and methods for manag-
ing an application installation and associated resources.

2. Background of the Invention

Today’s applications are very complex both in terms of
actual functionality and in the number of components that
must interact in order to provide a computing service. In
particular, applications often require various external
resources to facilitate their operation. Often, these resources
are standardized software modules or systems such as data-
bases, web servers, and the like. The deployment of applica-
tions has recently been facilitated by using commoditized
services such as a “Platform as a Service” (PaaS) that pro-
vides the capability to provision or modify the different
resources of a computing platform on demand, such as an
operating system, virtual machine, database, web server, file
system, storage and network resources, or any other applica-
tion or resource. Typically the PaaS also interacts with an
infrastructure as a service (IaaS) component to provision
virtual machines (or computing power) before the software
can be deployed.

The following detailed description provides scalable and
improved systems and methods for providing PaaS and asso-
ciated functionality, particularly for extremely large deploy-
ments.

BRIEF DESCRIPTION OF THE DRAWINGS

In order that the advantages of the invention will be readily
understood, a more particular description of the invention
briefly described above will be rendered by reference to spe-
cific embodiments illustrated in the appended drawings.
Understanding that these drawings depict only typical
embodiments of the invention and are not therefore to be
considered limiting of its scope, the invention will be
described and explained with additional specificity and detail
through use of the accompanying drawings, in which:

FIG. 1 is a schematic block diagram of an environment for
implementing a platform as a service (PaaS) management
methods in accordance with an embodiment of the present
invention;

FIG. 2 is a block diagram of a computing device suitable
for implementing embodiments of the present invention;

FIG. 3 is a schematic block diagram of a PaaS node accor-
dance with an embodiment of the present invention;

FIG. 4 is a schematic block diagram of a coordinator in
accordance with an embodiment of the present invention;

FIG. 5 is a process flow diagram of a method for queuing
deployment actions in accordance with an embodiment of the
present invention;

FIG. 6 is a process flow diagram of a method for perform-
ing deployment actions by a PaaS node in accordance with an
embodiment of the present invention;

FIG. 7 is a process flow diagram for thread-based process-
ing of deployment actions by a PaaS node in accordance with
an embodiment of the present invention;

FIG. 8 is a process flow diagram of a method for initiating
coordination of a deployment job in accordance with an
embodiment of the present invention;

FIG. 9 is a process flow diagram of a method for coordi-
nating execution of a deployment job in accordance with an
embodiment of the present invention; and

20

25

30

40

45

50

55

2

FIG. 10 is a process flow diagram of a method for main-
taining PaaS node capacity in accordance with an embodi-
ment of the present invention.

DETAILED DESCRIPTION

It will be readily understood that the components of the
present invention, as generally described and illustrated in the
Figures herein, could be arranged and designed in a wide
variety of different configurations. Thus, the following more
detailed description of the embodiments of the invention, as
represented in the Figures, is not intended to limit the scope of
the invention, as claimed, but is merely representative of
certain examples of presently contemplated embodiments in
accordance with the invention. The presently described
embodiments will be best understood by reference to the
drawings, wherein like parts are designated by like numerals
throughout.

The invention has been developed in response to the
present state of the art and, in particular, in response to the
problems and needs in the art that have not yet been fully
solved by currently available apparatus and methods.

Embodiments in accordance with the present invention
may be embodied as an apparatus, method, or computer pro-
gram product. Accordingly, the present invention may take
the form of an entirely hardware embodiment, an entirely
software embodiment (including firmware, resident software,
micro-code, etc.), or an embodiment combining software and
hardware aspects that may all generally be referred to herein
as a “module” or “system.” Furthermore, the present inven-
tion may take the form of a computer program product
embodied in any tangible medium of expression having com-
puter-usable program code embodied in the medium.

Any combination of one or more computer-usable or com-
puter-readable media may be utilized. For example, a com-
puter-readable medium may include one or more of'a portable
computer diskette, a hard disk, a random access memory
(RAM) device, a read-only memory (ROM) device, an eras-
able programmable read-only memory (EPROM or Flash
memory) device, a portable compact disc read-only memory
(CDROM), an optical storage device, and a magnetic storage
device. In selected embodiments, a computer-readable
medium may comprise any non-transitory medium that can
contain, store, communicate, propagate, or transport the pro-
gram for use by or in connection with the instruction execu-
tion system, apparatus, or device.

Computer program code for carrying out operations of the
present invention may be written in any combination of one or
more programming languages, including an object-oriented
programming language such as Java, Smalltalk, C++, or the
like and conventional procedural programming languages,
such as the “C” programming language or similar program-
ming languages. The program code may execute entirely on a
computer system as a stand-alone software package, on a
stand-alone hardware unit, partly on a remote computer
spaced some distance from the computer, or entirely on a
remote computer or server. In the latter scenario, the remote
computer may be connected to the computer through any type
of network, including a local area network (LAN) or a wide
area network (WAN), or the connection may be made to an
external computer (for example, through the Internet using an
Internet Service Provider).

The present invention is described below with reference to
flowchart illustrations and/or block diagrams of methods,
apparatus (systems) and computer program products accord-
ing to embodiments of the invention. It will be understood
that each block of the flowchart illustrations and/or block

US 9,342,369 B2

3

diagrams, and combinations of blocks in the flowchart illus-
trations and/or block diagrams, can be implemented by com-
puter program instructions or code. These computer program
instructions may be provided to a processor of a general
purpose computer, special purpose computer, or other pro-
grammable data processing apparatus to produce a machine,
such that the instructions, which execute via the processor of
the computer or other programmable data processing appa-
ratus, create means for implementing the functions/acts
specified in the flowchart and/or block diagram block or
blocks.

These computer program instructions may also be stored in
a computer-readable medium that can direct a computer or
other programmable data processing apparatus to function in
a particular manner, such that the instructions stored in the
computer-readable medium produce an article of manufac-
ture including instruction means which implement the func-
tion/act specified in the flowchart and/or block diagram block
or blocks.

The computer program instructions may also be loaded
onto a computer or other programmable data processing
apparatus to cause a series of operational steps to be per-
formed on the computer or other programmable apparatus to
produce a computer implemented process such that the
instructions which execute on the computer or other program-
mable apparatus provide processes for implementing the
functions/acts specified in the flowchart and/or block diagram
block or blocks.

FIG. 1 illustrates components of a computing environment
in which the methods described hereinbelow may be imple-
mented. For example, a portal 100 may receive deployment
jobs for execution by any of a plurality of platform as aservice
(PaaS) nodes 102. The portal 100 may, for example, receive
deployment jobs from an interface executing elsewhere or
interfaces executing on a plurality of client computers. The
portal 100 may receive deployment jobs from a load balancer
that distributes deployment jobs to the PaaS nodes 102
according to any load balancing algorithm, including simple
random or round robin assignment or more sophisticated
algorithms. Alternatively, the portal 100 may implement such
as load balancer. The PaaS nodes 102 may be executed on
separate computing devices or a single computing device may
host multiple PaaS node 102 instances.

As known in the art PaaS provides “cloud computing”
resources including a computing platform (e.g., hardware,
operating system, and/or virtual machine) as well as one or
more software resources needed to provide a service. Soft-
ware resources may include, for example, databases, web
servers, messaging service, a compiler, a scripting language
interpreter, an execution container, a load balancer, a Java™
servlet container, a nodes package manager, configuration
resources, a storage service, or other resource.

The PaaS nodes 102 may be operable to deploy and con-
figure some or all of these resources as well as take actions in
order to start, stop, or modify the operation of any of these
resources or upgrade or otherwise modify these resources.
Actions may include upgrade requests, start requests, stop
requests, traffic enable requests, traffic disable requests, pro-
visioning requests, installation requests, load balancer bind-
ing requests, database provisioning requests, database edit
requests, or other actions. The deployment and other types of
actions may be taken with respect to one or more installation
nodes 104. The installation nodes 104 may each be a separate
computing devices or a single computing device may have
multiple instances of installation nodes 104 executing
thereon. The installation nodes 104 typically include different
computing devices than those executing the PaaS nodes 102,

40

45

50

4

but may execute on the same devices in some embodiments.
The PaaS nodes 102 may be in data communication with one
another and with the installation nodes 104 by a network 106,
such as a local area network (LLAN), wide area network
(WAN), virtual private network (VPN), the Internet, or some
other network.

The PaaS nodes may additionally be in data communica-
tion with a queue module 108 and coordinator module 110,
such as by means of a different network 112 or the same
network 106. The operation of the coordinator module 110
will be described in greater detail below. The queue module
108 implements a first in first out (FIFO) buffer, the use of
which in the context of embodiments of the invention is also
described in greater detail below. The queue module 108 and
coordinator module 110 may be executed on a same comput-
ing device as one or more of the PaaS nodes 102 or one or
more other computing devices.

FIG. 2 is a block diagram illustrating an example comput-
ing device 200. Computing device 200 may be used to per-
form various procedures, such as those discussed herein. In
particular, a installation node 104 or a computing device
implementing a PaaS node 102, queue module 108, or coor-
dinator module 110 may be include some or all of the com-
ponents of the illustrated computing device 200. Computing
device 200 can function as a server, a client, or any other
computing entity. Computing device can perform various
monitoring functions as discussed herein, and can execute
one or more application programs, such as the application
programs described herein. Computing device 200 can be any
of a wide variety of computing devices, such as a desktop
computer, a notebook computer, a server computer, a hand-
held computer, tablet computer and the like.

Computing device 200 includes one or more processor(s)
202, one or more memory device(s) 204, one or more inter-
face(s) 206, one or more mass storage device(s) 208, one or
more Input/Output (I/O) device(s) 210, and a display device
230 all of which are coupled to a bus 212. Processor(s) 202
include one or more processors or controllers that execute
instructions stored in memory device(s) 204 and/or mass
storage device(s) 208. Processor(s) 202 may also include
various types of computer-readable media, such as cache
memory.

Memory device(s) 204 include various computer-readable
media, such as volatile memory (e.g., random access memory
(RAM) 214) and/or nonvolatile memory (e.g., read-only
memory (ROM) 216). Memory device(s) 204 may also
include rewritable ROM, such as Flash memory.

Mass storage device(s) 208 include various computer read-
able media, such as magnetic tapes, magnetic disks, optical
disks, solid-state memory (e.g., Flash memory), and so forth.
As shown in FIG. 2, a particular mass storage device is a hard
disk drive 224. Various drives may also be included in mass
storage device(s) 208 to enable reading from and/or writing to
the various computer readable media. Mass storage device(s)
208 include removable media 226 and/or non-removable
media.

1/0 device(s) 210 include various devices that allow data
and/or other information to be input to or retrieved from
computing device 200. Example 1/O device(s) 210 include
cursor control devices, keyboards, keypads, microphones,
monitors or other display devices, speakers, printers, network
interface cards, modems, lenses, CCDs or other image cap-
ture devices, and the like.

Display device 230 includes any type of device capable of
displaying information to one or more users of computing
device 200. Examples of display device 230 include a moni-
tor, display terminal, video projection device, and the like.

US 9,342,369 B2

5

Interface(s) 206 include various interfaces that allow com-
puting device 200 to interact with other systems, devices, or
computing environments. Example interface(s) 206 include
any number of different network interfaces 220, such as inter-
faces to local area networks (LANs), wide area networks
(WANs), wireless networks, and the Internet. Other
interface(s) include user interface 218 and peripheral device
interface 222. The interface(s) 206 may also include one or
more user interface elements 218. The interface(s) 206 may
also include one or more peripheral interfaces such as inter-
faces for printers, pointing devices (mice, track pad, etc.),
keyboards, and the like.

Bus 212 allows processor(s) 202, memory device(s) 204,
interface(s) 206, mass storage device(s) 208, and /O
device(s) 210 to communicate with one another, as well as
other devices or components coupled to bus 212. Bus 212
represents one or more of several types of bus structures, such
as a system bus, PCI bus, IEEE 1394 bus, USB bus, and so
forth.

For purposes ofillustration, programs and other executable
program components are shown herein as discrete blocks,
although it is understood that such programs and components
may reside at various times in different storage components
of computing device 200, and are executed by processor(s)
202. Alternatively, the systems and procedures described
herein can be implemented in hardware, or a combination of
hardware, software, and/or firmware. For example, one or
more application specific integrated circuits (ASICs) can be
programmed to carry out one or more of the systems and
procedures described herein.

FIG. 3 is a block diagram of a PaaS node 102. A PaaS node
102 may include a job queuing module 300, a queue interface
module 302, an execution module 304, and an updating mod-
ule 306.

The job queuing module 300 receives a deployment job
that includes a plurality of deployment actions, including the
installation, modification, removal, or other action with
respect to one or more of the resources identified above on one
ormore installation nodes 104. The actions taken may include
consuming an application manifest such as disclosed in U.S.
application Ser. No. 13/631,177 entitled SYSTEMS AND
METHODS FOR INSTALLING, MANAGING, AND PRO-
VISIONING APPLICATIONS, filed Sep. 28, 2012, which is
hereby incorporated herein by reference in its entirety for all
purposes. In a like manner, the deployment jobs may be
invoked in accordance with execution of an application mani-
fest

The job queuing module 300 extracts these actions and
posts them to a queue, such as a FIFO queue implemented by
a queue module 108. The deployment job may have an iden-
tifier associated with it upon receipt by a PaaS node 102 or a
job identifier may be associated with the job by the job queu-
ing module 300, coordinator module 110, or some other
entity. In either case, adding deployment actions to the queue
may include making an entry that includes data sufficient to
describe the action, such as a script, and the job identifier for
the deployment job in which the deployment action was
included. The deployment job may also, for each action to be
taken, identify an entity, computing device address, virtual
machine instance identifier, application instance identifier, or
any other information required to identify the device and/or
instance that are the target of the action. Accordingly, this
information may be extracted from the deployment job and
the entry in the queue for a deployment action may include
this information as well.

The job queuing module 300 may additionally initialize a
counter with a coordinator module 110 for each deployment

10

15

20

25

30

35

40

45

50

55

60

65

6

job. The counter may be initialized to O and have a stop or end
value equal to the number of deployment actions extracted
from the deployment job.

The queue interface module 302 requests deployment
actions from the queue for execution. For example, the queue
interface module 302 may include a function that makes a
request to a queue such as a take() or offer() method. The
method may block until a response is received from the
queue. If the queue is empty, then the method will simply
block until a deployment action is available. If a deployment
actionis available, the function receives the entry in the queue
for the deployment action and forwards some or all of the
information in the entry to the execution module 304 for
execution. The execution module 304 performs the actions
specified in the received deployment action for the target
device and/or instance specified in the deployment action.
The execution module 304 may implement some or all of the
functionality of a PaaS module as known in the art, including
performing actions described hereinabove with respect to any
of the resources described hereinabove. Upon successful
completion of the deployment action, the updating module
306 reports completion of the action, as will be described in
greater detail herein below, such as by interfacing with a
coordinator module 110.

Referring to FIG. 4, the coordinator module 110 may
include a counter initiation module 400, a counter update
module 402, a listening module 404, and a reporting module
406.

The counter initiation module 400 receives requests from
the PaaS nodes 102 to initiate a counter. As noted above the
request may include a job identifier. Alternatively, the counter
initiation module 400 may assign a job identifier and return
this identifier to the calling function for association with the
entries for deployment actions in the queue. In either case, the
counter initiation module 400 initiates a counter and associ-
ated the counter with the job identifier. The request may
include an action count indicating the number of actions in the
deployment job associated with the counter. This action count
may likewise be associated with the counter as a stop value at
which the count will be deemed to have completed.

In some embodiments, the counter initiation module may
additionally create a locking data structure for the job iden-
tifier, such as a semaphore, mutex, or other multi-threaded
control data structure. The locking data structure may be
subsequently used to avoid error conditions when updating
the counter, for example.

The counter update module 402 receives requests to update
a counter from the PaaS nodes 102 upon completion of
deployment actions. Upon completing a deployment action,
the PaaS node may request or otherwise invoke incrementing
the counter corresponding to the deployment job that
included the action. The counter update module 402 may
receive these requests, extract a job identifier included in the
request, and update the corresponding counter.

In some embodiments, the counter update module 402 may
first receive a request to lock the counter for a job identifier
from a PaaS node 102, such as using a locking data structure
for the counter, receive a request to update the counter from
the PaaS node 102, and then receive a request to release the
locking data structure from the PaaS node 102.

In some embodiments, a PaaS node 102 may register a
listening function with the coordinator module 110 upon
requesting initialization of a counter for a job identifier. The
listening function may include a block of code executed upon
the occurrence of one or both of updating of the counter and
the counter reaching a stop value. Accordingly, the listening
module 404 may execute this listening function when the

US 9,342,369 B2

7

counter corresponding to the same job identifier as the listen-
ing function is updated or reaches a stop value.

The reporting module 406 may report one or both of updat-
ing of a counter and completion of a job as inferred from a
counter reaching a stop value. The reporting module 406 may
report completion of a job to one or more of the PaaS node 102
that initiated the counter for the job, a portal 100, or some
other entity that submitted the deployment job to the portal
100.

FIG. 5 illustrates a method 500 for queuing the deployment
actions of a deployment job. The method 500 may include
receiving 502 a deployment job including a plurality of
deployment actions. The deployment job may be received
502 by means of a user interface from a developer or admin-
istrator, by reading a file, receiving transmitted data, or some
other means. The received deployment job may be submitted
504 by the receiving entity or device to a load balancer 504
that assigns 506 the job to a PaaS node 102. The method for
assigning the job may be any load balancing algorithm known
in the art, such as random selection, round-robin assignment,
or a more sophisticated algorithm that takes into account
actual loading of individual PaaS nodes 102.

Upon receiving the assignment, the receiving PaaS node
102 extracts 508 deployment actions from the job and adds
510 the deployment actions to the queue. The entries added to
the queue may include such information as an identifier of the
job from which the job was extracted, a description of the
action to be taken (e.g. a script or one or more instructions),
and a target identifier for a target of the action. The target
identifier may reference such information as an address of a
target device, an identifier of a target virtual machine, an
identifier of a target container, an identifier of a target appli-
cation instance, or any other information needed to identify a
target of the deployment action. The target identifier may
identify a class or group of devices and/or instances that are
the target of the action. The information included in the queue
entry may be extracted from the received deployment job. In
some embodiments, the job identifier is included in the
deployment job as received. In other embodiments, job iden-
tifiers are assigned after receipt. For example, when queuing
the job, a job identifier may be assigned by the queue module
or other module to the deployment job.

The receiving PaaS node 102 may also interface with the
coordinator module 110 in order to request 512 counter ini-
tiation for a received job. A request to initiate a counter may
include such information as the job identifier for the job and
a stop count. Where the counter is initiated to 0, the stop count
may equal N-1, where N is the number of actions in a deploy-
ment job. In some embodiments, the coordinator module 110
may assign a job identifier upon initiating the counter and
return this job identifier to the requesting PaaS node 102.

The receiving PaaS node 102 may also request 514 regis-
tration of a listening function. As noted above, a listening
function may be a block of code that is associated with the
counter and executed upon the occurrence of one or both of
updating of the counter and the counter reaching a stop count.
The listening function may implement any programmable
functionality. In particular, the listening function may invoke
reporting of an update to the counter or reaching of a stop
count, which may be a result of a different PaaS node than the
receiving PaaS node 102, an executing PaaS node 102.

Asis described in greater detail below, multiple PaaS nodes
102 may retrieve deployment actions from the queue and
execute them. In order to avoid race conditions or lost
updates, a thread-safe lock may be associated with a counter.
Accordingly, the receiving PaaS node 102 may request 516
instantiating of a thread-safe lock associated with a job iden-

20

25

35

40

45

55

8

tifier. The request may include the job identifier. The thread-
safe lock may be implemented as a semaphore, mutex, or
other thread-safe data structure.

In some embodiments, a single instruction or request from
the receiving PaaS node 102 may invoke all three of initiation
of a counter, registering a listener, and requesting a thread
safe lock. As noted above, the requests for these actions may
be accompanied by a job identifier, or the coordinator module
110 may select a job identifier and return the selected identi-
fier to the requesting PaaS node 102 as well as associate the
job identifier with the requested counter, listening function,
and thread-safe lock.

In some embodiments, a single object may include as vari-
ables and methods thereof the variables and methods imple-
menting all of the counter, listening function, and thread-safe
lock. In such embodiments, a handle to this function may be
returned to the requesting PaaS node 102. Likewise, a handle
to this object may be associated with entries in the queue
associated with the deployment job for the object. Executing
PaaS nodes may then use this handle to update the counter of
the object when executing actions from the deployment job
associated with the object.

FIG. 6 illustrates a method 600 that may be executed by an
executing PaaS node 102. As noted above, a receiving PaaS
node 102 may also be an executing PaaS node. The method
600 may include submitting 602 a request for a deployment
action to the queue module 108. The function that submits the
requests 602 may block indefinitely until a deployment action
is available from the queue.

The deployment action sent from the queue is received 604
by the executing PaaS node 102. Receiving 604 the deploy-
ment action may include receiving some or all of the entry for
the deployment action in the queue as described above,
including the job identifier for the action, the instruction or
instructions to be taken, and a target device and/or instance.
The executing PaaS node 102 may then execute 606 the action
for the specified target. The action and target may include any
of'the actions or targets described hereinabove.

The method 600 may then include obtaining 608 a lock for
the job counter for the job identifier of the executed action.
The executing PaaS node 102 may then invoke updating 610
of the job counter and then release 612 the lock. In some
embodiments, order of execution of deployment actions from
a deployment job may be important. In such embodiments a
lock may be obtained 608 with respect to a job identifier, a
deployment action for the job identifier may be executed 606,
the counter updated 610, and then the lock released 612.
Other PaaS nodes may be prevented from executing deploy-
ment actions for the job identifier until the lock is released.

FIG. 7 illustrates a method 700 that may be executed by an
executing PaaS node 102. In particular, a PaaS node 102 may
have a principal thread of execution and a flexible pool of
worker threads. The method 700 may be executed by the
principle thread. The method 700 may include submitting 702
arequest for action to the queue and receiving 704 assignment
of'a deployment action from the queue in the same manner as
for the method 600. The principal thread may then select
and/or instantiate 706 a worker thread and start 708 the
selected thread executing the assigned action. In this manner,
the principal thread may continue retrieving deployment
actions. Also, the number of worker threads may be expanded
up to a maximum number of threads for the PaaS node 102 by
adding threads to the thread pool when no thread is available
for selection.

FIG. 8 illustrates a method 800 that may be executed by a
coordinator module 110. Various off-the-shelf coordinator
modules are available and may be used to perform the method

US 9,342,369 B2

9

800. For example, the ZooKeeper™ software package may be
used. The method 800 may include receiving a job identifier
and action count 802, such as from the queue module 108 or
a receiving PaaS 102. As noted above, in some embodiment,
the job identifier may be assigned by the coordinator module
110, such that only a action count need be received to start a
counter, and the assigned job identifier returned to a request-
ing receiving PaaS 102. The coordinator module 110 may
then initiate 804 a counter for the job identifier. As noted,
initiating a counter may include setting the counter value to
zero or one and setting a stop value to N or N-1, where N is
the action count.

The method 800 may additionally include receiving 806 a
listener function from the requesting PaaS node 102 and
registering 808 the listener function in associating with the
one or both of the job identifier and the job counter. As noted
above, the listener function may define an action taken upon
the occurrence of one or both updating of the counter and the
counter reaching a stop value. The action taken may be to
report the updating of the counter or reaching of the stop value
to some entity, such as a receiving PaaS node 102, portal 100,
or some other entity. A thread-safe lock may also be generated
810 and associated with the job identifier. As noted above the
thread-safe lock may be a semaphore, mutex, or other data
structure for coordinating multi-threaded functionality.
When a counter reaches a stop count, the thread-safe lock,
counter, and listener may be removed or otherwise released
for use for other deployment jobs.

FIG. 9 illustrates a method 900 that may be executed by a
coordinator module 110. The method 900 may include
receiving 902, from an executing PaaS node 102, a request to
lock the thread-safe lock for a job identifier and locking 904
the lock as requested in order to prevent modification of the
counter until the lock is released. The job counter correspond-
ing to the received job identifier may be incremented 906.
Incrementing may occur automatically upon receiving 902
the request to lock or may be in response to a separate request
received from the executing PaaS node 102. The method 900
may further include receiving 906 an instruction from the
executing PaaS node 102 and, in response to the instruction,
releasing 910 the lock, thereby enabling other executing PaaS
nodes 102 to update the counter.

The method 900 may further include evaluating 912
whether the action count for the counter as been reached. If
s0, then completion of the job may be reported 914. Reporting
completion may include communicating this fact to the
receiving PaaS node 102 that invoked initiation of the counter.
In either case, a listener registered for the counter may be
executed 916.

In some embodiments, the step of evaluating 12 the counter
with respect to an action account may be performed by the
receiving PaaS node 102 that initiated the counter. For
example, the listener may be executed 916 regardless of value
of the counter in order to report that current value of the
counter to an entity, such as the receiving PaaS node 102. The
receiving PaaS node 102 may then evaluate 912 the counter
value with respect to an action count for the associated
deployment job and report 914 job completion to an entity
that submitted the deployment job to the receiving PaaS node
102, such as to the portal 100, an interface through which the
job was submitted, a log file, or to some other entity.

FIG. 10 illustrates a method 1000 that may be executed by
a PaaS node 102. In some embodiments, a PaaS node 102 of
the plurality of PaaS nodes 102 may be selected as a leader
PaaS node 102. This process may be performed as a negotia-
tion among the plurality of PaaS node 102. For example, the
PaaS node 102 having loading and computing resources most

10

15

20

25

30

35

40

45

50

55

60

65

10

suitable for performing the functions of a leader node may be
selected as the leader PaaS node 102 by the other PaaS node
102. In order to accommodate the decentralized structure of
the PaaS nodes 102 prior to selection of a leader node, the
process may include an election type process where PaaS
nodes 102 evaluate one another and that node that is selected
by the majority of the PaaS nodes is designated as the leader
node. Each PaaS node 102 may report its attributes and cur-
rent loading to the other nodes and based on common evalu-
ation criteria, each PaaS node 102 may make a selection.
Where a leader node goes offline, then the process may be
repeated and another leader node may be selected.

The selected leader node or some other entity may perform
the method 1000. The method 1000 may include retrieving
1002 a number of live counters from a coordinator module
110. Live counters may be those that have not yet reached
their stop count. The method 1000 may further include evalu-
ating 1004 whether the number of live counters plus a first
buffer amount is larger than the total number of threads avail-
able for processing deployment tasks according to the meth-
ods disclosed herein. The total number of threads may be
equal to the maximum number of threads possible per PaaS
node 102 multiplied by the current number of PaaS nodes
102.

Ifthe number of live counters plus a buffer value is greater
than the first buffer amount above the total available threads,
them one or more PaaS nodes 102 may be instantiated 1006.
In many applications, a server farm can include a large num-
ber of computing devices that can consume a large amount of
power. Accordingly, even though hardware may be available,
maintaining excess capacity active may be expensive.
Accordingly, a node may be instantiated 1006 as needed
when deployment actions need to be taken with respect to a
large number of installation nodes. This is particularly impor-
tant since deployments typically occur periodically and a
large amount of PaaS deployment capacity is not needed.

Instantiating 1006 a PaaS node may include adding an
instruction to instantiate the PaaS node to the queue in the
same manner as deployment actions in accordance with the
methods described hereinabove. Instantiating 1006 a PaaS
node may include taking required actions to allocate, install,
instantiate, configure, start, or otherwise prepare for use one
or more resources such as a computing device, operating
system, virtual machine, container, and one or more PaaS
applications and application resources necessary to perform
the functionality of a PaaS node 102. The number of PaaS
nodes instantiated may be chosen to be sufficient to bring the
total number of available threads a first buffer amount larger
than the number of live counters.

Where the number of live counters plus the first buffer
amount is not greater than the total number of available
threads, then the method 1000 may include evaluating 1008
whether the number of live counters plus a second buffer
value is less than the total number of available threads. If so,
then one or more PaaS nodes 102 may be de-provisioned
1010. The number of PaaS nodes 102 de-provisioned may be
sufficient to reduce the total number of available threads to be
less than the second buffer amount larger than the number of
live counters. The second buffer amount may be smaller than
the first buffer amount. In some embodiments, the second
buffer amount may be zero. In some embodiments, a mini-
mum number of available threads may be maintained regard-
less of actual live counter count in order to provide a base
level of availability. De-provisioning 1010 may include
releasing, stopping, deleting, or otherwise ceasing use of the
resources of the de-provisioned PaaS node 102.

US 9,342,369 B2

11

The present invention may be embodied in other specific
forms without departing from its spirit or essential character-
istics. The described embodiments are to be considered in all
respects only as illustrative, and not restrictive. The scope of
the invention is, therefore, indicated by the appended claims,
rather than by the foregoing description. All changes which
come within the meaning and range of equivalency of the

claims are to be embraced within their scope.

What is claimed is:
1. A method for providing platform as a service (PaaS)

throughput, the method comprising:

receiving, by a plurality of PaaS nodes each executing on a
computing device, a plurality of deployment jobs,
wherein one of the plurality of PaaS nodes is a leader
node;

extracting, by the plurality of PaaS nodes, a plurality of
deployment actions from each deployment job of the
plurality of deployment jobs, the plurality of deploy-
ment actions comprising consuming an application
manifest;

posting, by the plurality of PaaS nodes, the plurality of
deployment actions to an action queue;

creating an action description entry for at least one of the
plurality of deployment actions, the action description
entry comprising:

a script description of the at least one of the plurality of
deployment actions; and

a job identifier for each deployment job of the plurality
of deployment jobs associated with the at least one of
the plurality of deployment actions;
retrieving, by the plurality of PaaS nodes, individual ones
of the plurality of deployment actions from the action
queue;
executing, by the plurality of PaaS nodes, the individual
ones of the plurality of deployment actions with respect
to a plurality of installation nodes and in accordance
with the application manifest, wherein executing the
individual ones of the plurality of deployment actions
comprises:
initiating, by the plurality of PaaS nodes, a respective
counter in a coordinator module for each deployment
job of the plurality of deployment jobs having the job
identifier and an action count corresponding to each
of the individual ones of the plurality of deployment
actions;

updating, by the plurality of PaaS nodes, upon execution
of each of the individual ones of the plurality of
deployment actions, the respective counter in the
coordinator module for each deployment job of the
plurality of deployment jobs; and

reporting, by the coordinator module, completion of
each deployment job of the plurality of deployment
jobs upon detection of the respective counter corre-
sponding to each deployment job of the plurality of
deployment jobs reaching an action count of the
respective counter; and
while executing each individual one of the plurality of
deployment actions, evaluating, by the leader node, a set
of counters of the coordinator module, to maintain an
amount of PaaS nodes needed by:
instantiating, by the leader node, additional PaaS nodes
when a number of the plurality of PaaS nodes multi-
plied by a maximum number of threads is less than a
threshold amount above a number of the set of
counters; and

de-provisioning, by the leader node, a portion of the
plurality of PaaS nodes when the number of the plu-
rality of PaaS nodes multiplied by the maximum num-
ber of threads is greater than a second threshold
amount above the number of the set of counters.

10

15

25

40

45

50

12

2. The method of claim 1, wherein:
each of the plurality of deployment actions includes:
an application instance identifier; and
an action with respect to an application instance corre-
sponding to the application instance identifier execut-
ing on an application node.
3. The method of claim 2, wherein the application instance

identifier identifies the computing device executing the appli-
cation instance.

4. The method of claim 2, wherein the plurality of deploy-
ment actions comprise at least one of:

upgrade requests;

start requests;

stop requests;

traffic enable requests;

traffic disable requests;

provisioning requests;

installation requests;

load balancer binding requests;

database provisioning requests; or

database edit requests.

5. The method of claim 1, wherein executing, by the plu-
rality of PaaS nodes, the individual ones of the plurality of
deployment actions comprises, for each individual one of the
plurality of deployment actions:

selecting a thread;

starting the thread executing the individual one of the plu-

rality of deployment actions; and

requesting another individual one of the plurality of

deployment actions from the action queue.

6. The method of claim 1, further comprising:

instantiating, by the leader node, the additional PaaS nodes

in accordance with a number of the plurality of deploy-
ment jobs received.

7. The method of claim 1, wherein:

each of the plurality of deployment actions includes:

an application instance identifier; and

an action with respect to an application instance corre-
sponding to the application instance identifier execut-
ing on an application node;

the application instance identifier identifies the computing

device executing the application instance;

the plurality of deployment actions comprise at least one

of:

upgrade requests;

start requests;

stop requests;

traffic enable requests;

traffic disable requests;
provisioning requests;
installation requests;

load balancer binding requests;
database provisioning requests; or
database edit requests; and

executing, by the plurality of PaaS nodes, the individual

ones of the plurality of deployment actions comprises,

for each individual one of the plurality of deployment

actions:

selecting a thread;

starting the thread executing the individual one of the
plurality of deployment actions; and

requesting another individual one of the plurality of
deployment actions from the action queue.

8. A system for providing platform as a service (PaaS)
throughput, the system comprising a plurality of PaaS nodes,
wherein one of the plurality of PaaS nodes is a leader node,
each of the plurality of PaaS nodes comprising one or more
processors and one or more memory devices operably
coupled to the one or more processors, the one or more

US 9,342,369 B2

13

memory devices storing executable and operational data
effective to cause the one or more processors of the plurality
of PaaS nodes to:
receive a plurality of deployment jobs;
extract a plurality of deployment actions from each deploy-
ment job of the plurality of deployment jobs, the plural-
ity of deployment actions comprising consuming an
application manifest;
post the plurality of deployment actions to an action queue;
create an action description entry for at least one of the
plurality of deployment actions, the action description
entry comprising:
a script description of the at least one of the plurality of
deployment actions; and
a job identifier for each deployment job of the plurality
of deployment jobs associated with the at least one of
the plurality of deployment actions;
retrieve individual ones of the plurality of deployment
actions from the action queue; and
execute the individual ones of the plurality of deployment
actions with respect to a plurality of installation nodes
and in accordance with the application manifest,
wherein the execution of the individual ones of the plu-
rality of deployment actions comprises:
initiating, by the plurality of PaaS nodes, a respective
counter in a coordinator module for each deployment
job of the plurality of deployment jobs having the job
identifier and an action count corresponding to each
of the individual ones of the plurality deployment
actions;
updating, by the plurality of PaaS nodes, upon execution
of each of the individual ones of the plurality of
deployment actions, the respective counter in the
coordinator module for each deployment job of the
plurality of deployment jobs; and
reporting, by the coordinator module, completion of
each deployment job of the pluality of deployment
jobs upon detection of the respective counter corre-
sponding to each deployment job of the plurality of
deployment jobs reaching an action count of the
respective counter; and
evaluate, during the execution of each individual one of the
plurality of deployment actions, by the leader node, a set
of counters of the coordinator module, to maintain an
amount of PaaS nodes needed by:
instantiating, by the leader node, additional PaaS nodes
when a number of the plurality of PaaS nodes multi-
plied by a maximum number of threads is less than a
threshold amount above a number of the set of
counters; and
de-provisioning, by the leader node, a portion of the
plurality of PaaS nodes when the number of the plu-
rality of PaaS nodes multiplied by the maximum num-
ber of threads is greater than a second threshold
amount above the number of the set of counters.
9. The system of claim 8, wherein:
each of the plurality of deployment actions include:
an application instance identifier; and
an action with respect to an application instance corre-
sponding to the application instance identifier execut-
ing on an application node.

14

10. The system of claim 9, wherein the application instance
identifier identities a computing device executing the appli-
cation instance.

11. The system of claim 9, wherein the plurality of deploy-

5 ment actions comprise at least one of:

upgrade requests;

start requests;

stop requests;

traffic enable requests;

traffic disable requests;

provisioning requests;

installation requests;

load balancer binding requests;

database provisioning requests; or

database edit requests.

12. The system of claim 8, wherein the executable and
operational data are further effective to cause the one or
processors of the plurality of PaaS nodes to execute the indi-
vidual ones of the plurality of deployment actions by, for each
individual one of the plurality of deployment action:

20
select a thread;
start the thread executing the individual one of the plurality
of deployment actions; and
request another individual one of the plurality of deploy-
»s ment actions from the action queue.

13. The system of claim 8, wherein the one or more
memory devices of the leader node effective to cause the one
or more processors of the leader node to instantiate the addi-
tional PaaS nodes in accordance with a number of the plural-
ity of deployment jobs received.

14. The system of claim 8, wherein:

each of the plurality of deployment actions includes:

an application instance identifier; and

an action with respect to an application instance corre-
sponding to the application instance identifier execut-
ing on an application node;

the application instance identifier identifies a computing

device executing the application instance;

the plurality of deployment actions comprise at least one

of:

upgrade requests;

start requests;

stop requests;

traffic enable requests;

traffic disable requests;
provisioning requests;
installation requests;

load balancer binding requests;
database provisioning requests; or
database edit requests; and

executing, by the plurality of PaaS nodes, the individual

ones of the plurality of deployment actions comprises,

for each individual one of the plurality of deployment

actions:

selecting a thread;

starting the thread executing the individual one of plu-
rality of deployment actions; and

requesting another individual one of the plurality of
deployment actions from the action queue.

30

40

45

55

#* #* #* #* #*

